

Aviation Cybersecurity Roadmap Research needs

Cyrille Rosay
Senior Expert Avionics – Cyber Security
Certification Directorate

Your safety is our mission.

Outcomes of EASA Conference on Cybersecurity in Aviation, 22th of May 2015 in Brussels

- ➤ Civil Air Transport System is vulnerable to cyber attacks
 - wide range of possible effects of cyber attack
 - exposing safety of flight,
 - Reducing capacity of European Air Transport,
 - increasing financial operational cost,
 - societal issues like loss of public's trust in
 - Operators
 - Civil Air Transport
- an actions plan needs to be developed,
 - together with aviation stakeholders
 - EASA focus primarily on European Aviation Safety

➤ 4 objectives

▶ 4 enablers

Note: it is a preliminary status, the EASA roadmap on cybersecurity is "work in progress"

Global strategy - Objectives

Situational awareness

identify threats and associated risk

Readiness

Get the aviation system and its systems robust to attacks

Have plans B ready

Reactiveness

Communication

incidents

Wide scale crisis

recovery

Cybersecurity Promotion

 improve cyber-threats perception of aviation users (operational, pilots, crews, air traffic controllers, etc.)

provide up to date security information, education and good practices

	Situational Awareness	Readiness	Reactive capability	Promotion
AV-CERT	X	X	×	X
Regulatory Material		X		
Research	X	×		
Cooperation	X	X	X	X

Situation awareness

- First step: assess the Risk (impact * likelihood)
- Impact assessment (HIGH, MEDIUM, LOW)
 - Identify scenarios
 - On ATM, Aircraft systems, services, airports...
 - Evaluate the impact
 - In operational condition
 - Using average trained resources
- likelihood or difficulty of attack (HIGH, MEDIUM, LOW)
 - Analysis of architectures
 - Analysis of systems/software
 - penetration testing

impact

		LOW	MEDIUM	HIGH
Likelihood (difficulty)	HIGH (easy)			
	MEDIUM (moderate)			
	LOW (difficult)			

➤ Risk

- ➤ **High** loophole that needs to be quickly secured, and immediate workaround should be identified
- Medium serious security gap identified that would need timely answers.
 Workarounds have to be ready

➤ Low acceptable from a safety point of view, may need long term study.

Objective

- Get systems robust by design
- Maintain systems robustness during operation
- Get the aviation system resilient
 - a.k.a. prepare plans B

Short-term

> Study temporary solutions (workaround) for threats with High risk

Mid-term

- Study cost and feasibility of improvement for threats with High risk (i.e. design improvement, protocols, security tools...)
- Study temporary solutions for threats with Medium risk
- Long term

Study means to lower Medium risk

➤ Research is an important enabler of the EASA cyber security roadmap

Risk assessment Difficulty of attack

➤ 3 research areas: