Light Helicopter Demonstrator with HCE (High Compression Engine)

Alexandre Gierczynski
London, October 20th, 2015
Agenda

Project Overview

Advantages and drawback

Engine key characteristics

Achievements

Conclusion
Project Overview

Project launched in the frame of Cleansky Green RotorCraft (GRC) Integrated Technology Demonstrators (ITD)

- Environmental targets
 - For H120 HCE Demonstrator, Airbus Helicopters committed on -30% Specific Fuel Consumption (SFC)

HIPE 440 Partners selected after successful Call for Proposal in February 2011
- TEOS: mechanical design, engine main parts manufacturing, assembly and testing
- AustroEngine: FADEC and harness, fuel system, airworthiness

Key dates
- KOM
- First engine run on engine bench
- Iron bird
- Ground run
- Maiden Flight

June 2011
March 2013
Oct 2013 – Feb 2014
Feb – Mar 2015
H2/2015

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) for the Clean Sky Joint Technology Initiative under grant agreement n° CSJU-GAM-GRC-2008-001.
HCE advantages and drawback (vs equivalent turboshaft)

Advantages
• **CO2 emission reduced** (thanks to lower Specific Fuel Consumption) by minimum 30% and **up to 50%**
• **Performance maintained in hot** temperature and **high** altitude thanks to supercharging, whereas performance are continuously decreasing with air density for turboshafts
• **Direct Operating Costs lowered** (including fuel and maintenance)

Drawback:
• **Heavier** engine
 → need for brand new engine with installed mass/power ratio below 0,8kg/kW
Engine key characteristics

Components and material description
• 8 cylinders in V, 4.6L capacity, 90° angle
• Fueled with Kerosene (Jet-A)
• Fully machined aluminium blocks (cylinder head, crankcase, timing drive casing…)
• Fully machined titanium conrod
• Steel pistons and liners
• Common rail direct injection (1800bar)
• Supercharged (1 turbo per cylinder bank)
• Liquid cooled
• Dual channel FADEC controlled
• Starter and generator

Mass of Core engine dry = 197kg

Installed Powerpack for serial lower than 0,8kg/kW
Achievements
Achievement #1: Fuel consumption

Engine bench test results

GRC7 assessment

Specific fuel consumption (g/kW/h) vs power output (kW)

Calculation done by Cranfield University, at iso Payload (extract)

<table>
<thead>
<tr>
<th>Passenger Fuel Economy</th>
<th>HCE Y2020C vs SEL_U1 Y2020C</th>
<th>% A</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ per km</td>
<td>-62.08</td>
<td></td>
</tr>
<tr>
<td>NOₓ per km</td>
<td>-34.15</td>
<td></td>
</tr>
</tbody>
</table>

- Different mission profiles – results normalised wrt distance (44km mission range for SEL_U1 and 250km for HCE)

HCE: High Compression Engine
SEL_U1: Single Engine Light (Model 1st Update)
Y2020C: Aircrafts evolution in 2020 with Cleansky inputs

Depending on duty cycle: up to 62% fuel saving
Achievement #2: Rotor speed (Nr) control

- During Ground test, the Nr control reactivity was first evaluated too slow by Flight test crew
- Nr control parameters have been improved and approved by Flight test crew
 - Ex: collective pitch decrease

- Same applies to collective pitch increase
- This last set of parameters will be tested during Flight tests

Stable and fast Rotor speed control
Achievement #3: Torque oscillations reduction

Due to combustion principle (non-continuous) and high rotor inertia, a torque oscillations reduction device is mandatory. The chosen solution is a lightweight torsional shaft fitted in the Core Engine, acting like a low-pass filter.

Instantaneous Torque vs Crank-Angle at Crankshaft output: +/-100%!

Dynamic Torque at MGB inlet during max Power

Main Gearbox standard torque oscillations limits are respected
Achievement #4: Engine movements

Silent blocs are installed between Powerpack and Helicopter airframe in order to:
- Limit engine movements and secure link between Powerpack and Main Gearbox
- Damp vibration from Powerpack to Helicopter (and vice-versa)

Here below is an example of engine movements measured on engine front left foot during Iron bird campaign

Engine movements are very small and vibrations well damped
Conclusion

Assuming a successful test campaign, Airbus Helicopters, AustroEngine and TEOS have started discussions for possible further development and industrialization of this engine for Fixed-Wings and Rotorcraft use.
Thank you! Any question?